On Multivariate Orthogonal Poynomials and elementary symmetric functions

Miguel A Piñar
Departamento de Matemática Aplicada. Universidad de Granada. 18071 Granada. Spain.
mpinar@ugr.es

October 5, 2022

Abstract

We study families of multivariate orthogonal polynomials with respect to the symmetric weight function in d variables $$
B_{\gamma}(\mathrm{x})=\prod_{i=1}^{d} w\left(x_{i}\right) \prod_{i<j}\left|x_{i}-x_{j}\right|^{2 \gamma+1}, \quad \mathrm{x} \in(a, b)^{d}
$$ for $\gamma>-1$, where $w(t)$ is an univariate weight function in $t \in(a, b)$ and $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ with $x_{i} \in(a, b)$. Using the change of variables $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \mapsto \mathrm{u}=\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ where, u_{r} are the r-th elementary symmetric functions we study multivariate orthogonal polynomials in the variable u associated with the weight function $W_{\gamma}(\mathrm{u})$ defined by means of $W_{\gamma}(\mathrm{u})=B_{\gamma}(\mathrm{x})$. For the new weight function, the domain is described in terms of the discriminant of the polynomial having $x_{i}, i=1,2, \ldots, d$, as its zeros and in terms of the associated Sturm sequence. Obviously, generalized classical orthogonal polynomials as defined by Lassalle [2, 3, 4] and Macdonald [5] are included in our study. Choosing the univariate weight function as the Hermite, Laguerre and Jacobi weight functions, we obtain the representation in terms of the variables u_{r} for the partial differential operators having the respective Hermite, Laguerre and Jacobi generalized multivariate orthogonal polynomials as the corresponding eigenfunctions. The case $d=2$ coincides with the polynomials studied by Koornwinder in [1]. Finally, we explicitly present the partial differential operators for Hermite, Laguerre and Jacobi generalized polynomials in the cases $d=2$ and $d=3$.

This is a joint work with Cleonice Bracciali from Sao Paulo University (Brazil).

References

[1] T. H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I, Indag. Math., 36 (1974), 48-58.
[2] M. Lassalle, Polynômes de Jacobi généralisés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 425-428.
[3] M. Lassalle, Polynômes de Laguerre généralisés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 725-728.
[4] M. Lassalle, Polynômes de Hermite généralisés, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 579-582.
[5] I. G. Macdonald, Hypergeometric Functions I, arXiv:1309.4568 [math.CA]

